

Medium Voltage Busbar Systems

EAE GROUP IN NUMBERS

Since 1973

EAE Group of Companies started its journey in the electrical sector in 1973 with the establishment of EAE Elektrik. Since its founding, EAE has grown rapidly, expanding its production and areas of operation by incorporating EAE Lighting in 1983, EAE Machinery in 1996, EAE Electrotechnics in 2004, and EAE Technology in 2009.

EAE carries out its production activities in accordance with ISO 9001 Quality Management, ISO 14001 Environmental Management, ISO 14064-1 Greenhouse Gas Management System, ISO 45001 Occupational Health and Safety Management, ISO 10002 Customer Satisfaction Management, ISO 50001 Energy Management System, and ISO 27001 Information Security Management System standards.

Active Factories

360.000m² Enclosed Space

R&D Centers

150+Countries Exported To

CONTENTS

General Introduction	2
12kV	
Order Code System	4
Technical Characteristics	5
Standard Straight Length	6
Elbows	7
Horizontal & Vertical Cast Resin Busbar Applications	8
Trunking Support / 12 kV Additional Zone Weights	9
Panel Connection	11
Horizontal Application	12
Vertical Application	13
General Product Specifications	14
Certificate	15
17,5kV	
Order Code System	16
Technical Characteristics	17
Standard Straight Length	18
Elbows	19
Horizontal & Vertical Cast Resin Busbar Applications	20
Trunking Support / 12 kV Additional Zone Weights	21
Panel Connection	23
Horizontal Application	24
Vertical Application	25
General Product Specifications	26
Cortificato	27

General Introduction

Medium Voltage (MV) is manufactured within a single housing, the conductor copper are embedded in DURACOMP insulation which is a composite material of epoxy resin and pure silica minerals with Cu conductors specially selected and the epoxy resin.

Medium Voltage busbar systems are designed to operate at voltages of 12kV and 17,5kV. Manufactured as standard up to a rating of 5000 A. Please contact us for higher amperage applications.

Areas of Use

Exterior environments, industrial buildings, petrochemical buildings, regions with flood risk, oil and natural gas industry.

MV System Benefits

- · Products tested in accordance with international standards
- Corrosion-resistant
- Chemical-resistant
- · Resistance against insects and rodents
- · Usable in tropical environments
- · High mechanical strength
- · Without stack effect
- · Highly resistant to short circuit
- Low voltage drop when compared with cable

- Special design for occupying minimum space based on ampere level.
- Electroerosion resistant
- UV resistant
- · Designed to improve heat loss
- Maintenance-free busbar
- Easy Assembly
- · An ideal high temperature environments

Short-Circuit Withstand

Short-circuit resistance values tested are presented on the table. High busbar resistance can be seen based on the short-circuit values to be calculated.

Busbar Drawings

You may receive professional assistance is available to our clients by contacting our nearest dealer, distributor or our Project & Design departments for Busbar drawings Blueprints and calculating cost estimates.

* Modules required for special situations can be manufactured in a short time.

General Introduction

High IP Insulation

DURACOMP is a composite material of epoxy resin and pure silicon which gives the E-LINE MV busbar range a high mechanical strength and resistance to high temperatures and external effects as listed on Page 2

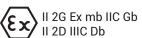
EAE Medium voltage busbar systems are manufactured using high density and high conductivity copper conductors. Contact areas of copper conductors can be coated by tin or optionally silver.

Ease of Heat Transfer

Heat forming on the additives used in the system with high heat transfer is easily dissipated to the environment by means of the housing.

Short-Circuit Withstand

High mechanical and thermal resistance thanks to the DURACOMP material.

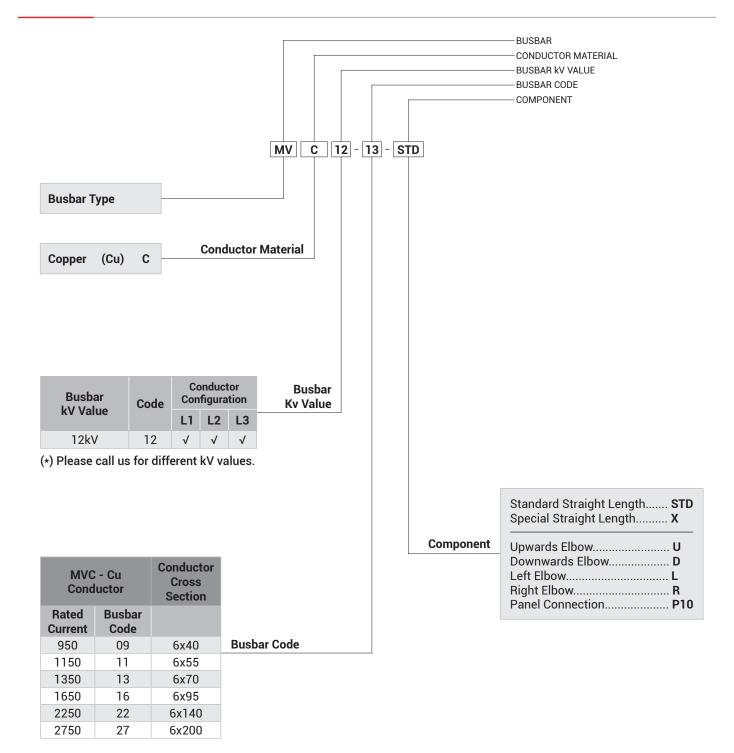

Housing

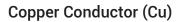
E-Line MV busbar is produced by combining the Duracomp insulated conductor within an extruded aluminium housing.

- · Light aluminium case
- · High Mechanical Strength and Chemical Resistance
- Adjustable support system
- · Safety earth continuity
- · Very less magnetic field

EX - Protected

ATEX as per EN 60079-0:2009, EN 60079-18:2009, EN60079-31:2009




Conductors are of 99.95% purity electrolytic copper electrolytic copper.

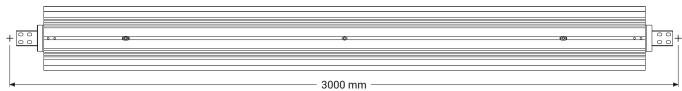
Order Code System

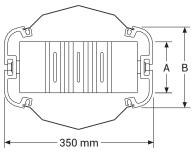
Technical Characteristics

Rated Current	l _r	A	950	1150	1350	1650	2250	2750
Busbar Kodu			09	11	13	16	22	27
Standards		 -200 Editior -307 Editior		•		 -6 Edition 1 e to IEC 622	.0 2012-05; 71-200	
Rated Voltage	U,	kV	12	12	12	12	12	12
Rated power frequency withstand voltage	U _d	kV	28	28	28	38	38	38
Rated impulse withstand withstand voltage	Up	kV	75	75	75	95	95	95
Rated Frequency	f _r	Hz	50	50	50	50	50	50
Partial Discharge		pC	< 20	< 20	< 20	< 20	< 20	< 20
External Mechanical Impacts (IK Code)*	50J, gre	ater than IK	10					
Rated Short-time Withstand Current (1s)	I _k	kA _{rms}	25	25	43	43	71,3	71,3
Rated Peak Withstand Current	I _{ke}	kA	65	65	112	112	185,5	185,5
Rated Short-time Withstand Current for PE Conductor (1s)	I _P	kA	15	15	26,3	26,3	42,4	42,4
Rated Peak Withstand Current for PE Conductor	I _{pe}	kA	39	39	72,4	72,4	110,2	110,2
MEAN PHASE CONDUCTOR CHARACTERISTICS AT RATED CURRENT In								
Resistance at a conductor temperature of 20°C	R ₂₀	mΩ/m	0,077	0,057	0,045	0,0352	0,0223	0,0162
Resistance at an ambient air temperature of 35°C	R	mΩ/m	0,104	0,078	0,061	0,0474	0,0304	0,0224
Reactance (Independent from Temperature)	Х	mΩ/m	0,116	0,097	0,084	0,0788	0,0576	0,0442
Positive and negative sequence impedances at an ambient air temperature of 35°C	Z	mΩ/m	0,156	0,125	0,104	0,0919	0,0651	0,0496
Positive and negative sequence impedances at an ambient air temperature of 20°C	Z ₂₀	mΩ/m	0,139	0,113	0,096	0,0863	0,0618	0,0471
Rated Power Loss at 35°C		Watt	278	297,1	324	370,3	443,3	491,7
DC Resistance at a conductor temperature of 20 °C for Phases	R _{phdc}	mΩ/m	0,071	0,050	0,039	0,030	0,019	0,013
DC Resistance at a conductor temperature of 20°C for PE	R _{PEdc}	mΩ/m	0,012	0,012	0,012	0,009	0,006	0,013
SECTIONS								
Phase Conductor		mm²	240	330	420	570	840	1200
PE (Housing)		mm²	5944	5944	5944	8105	8905	9704
Conductor Cross Section		mm x mm	6x40	6x55	6x70	6x95	6x140	6x200
Busbar Weight (3 Conductors)		kg/m	48,32	56,85	63,89	76,18	97,13	124,54
MEAN FAULT-LOOP CHARACTERISTICS								
Zero-sequence Impedance								
Zero-sequence impedance at a conductor temperature of 20°C	Z _{(0)b20phPE}	mΩ/m	0,309	0,292	0,271	0,248	0,203	0,176
Zero-sequence impedance at an ambient temperature of 35°C	Z _{(0)bphPE}	mΩ/m	0,328	0,307	0,285	0,258	0,210	0,182
Mean Resistances and Reactances								
Resistance at a conductor temperature of 20°C	R _{b20phph}	mΩ/m	0,150	0,112	0,088	0,073	0,049	0,035
Resistance at a conductor temperature of 20°C	R _{b20phPE}	mΩ/m	0,089	0,071	0,059	0,049	0,035	0,028
Resistance at an ambient air temperature of 35°C	R _{bphph}	mΩ/m	0,203	0,153	0,121	0,099	0,067	0,048
Resistance at an ambient air temperature of 35°C	R _{bphPE}	mΩ/m	0,120	0,096	0,081	0,065	0,048	0,038
Reactance (Independent from temperature)	X _{bphph}	mΩ/m	0,221	0,184	0,160	0,150	0,115	0,084
Reactance (Independent from temperature)	X _{bphPE}	mΩ/m	0,170	0,153	0,140	0,129	0,106	0,087

Standards The weight per metre provided in table includes 1/3 of the weight of one block joint.

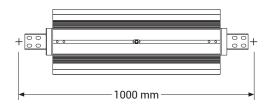
Standard Straight Length


Standard Feeder Straight Length


Sample Order.

MVC 1213 - STD 12 kV 1350 A, Copper, Feeder, 3 Conductors

Special Feeder Straight Length



X

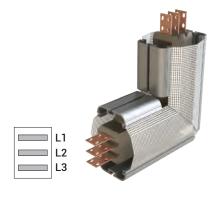
Sample Order.

MVC 1209 - X - 150 12 kV 950 A, Copper, Feeder, 3 Conductors, 1500 mm Special Length

Information: Feeder Minimum Special length size = 1000 mm

Table of Busbar Cross Section Sizes

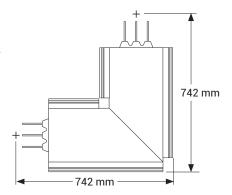
MVC - Cu Conductor	Rated Current (A)	950	1150	1350	1650	2250	2750
	Busbar Code	09	11	13	16	22	27
Α	mm	90	105	120	145	190	250
В	mm	192	192	192	247	297	347



Attention! The standard mounting of the MV busbar is with the conductors on edge. This allows for the easy application of the resin at the joint.

Elbows

Upwards Downwards Elbow

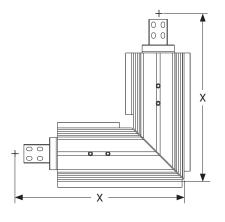


U Sample Order.

D MVC 1211 - U

MVC 1211 - U 12 kV 1150 A, Copper, Feeder, 3 Conductors

Left Right Elbow

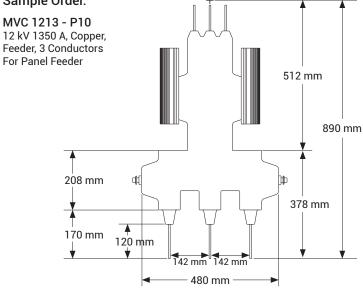


Sample Order.

R

L


MVC 1209 - R 12 kV 950 A, Copper, Feeder, 3 Conductors


Table of Busbar Cross Section Sizes

	MVC - Cu Conductor	Rated Current (A)	950	1150	1350	1650	2250	2750
		Busbar Code	09	11	13	16	22	27
	Х	mm	580	590	595	635	685	740

Panel Connection

P10 Sample Order.
T10 MVC 1213 - P10

Horizontal & Vertical Cast Resin Busbar Applications

Figure 1 - Edgewise Application

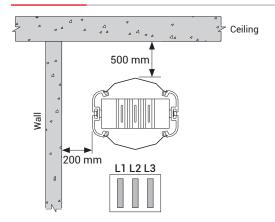
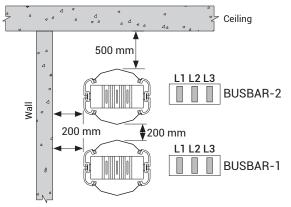



Figure 2 - Edgewise Application

Primarily on the installation phase; BUSBAR-1 line should be installed before BUSBAR-2 line.

Figure 4 - Sample Wall Crossing with Fire Barrier

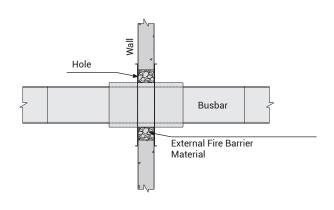


Figure 5 - Standard Wall Crossing

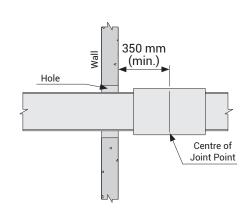
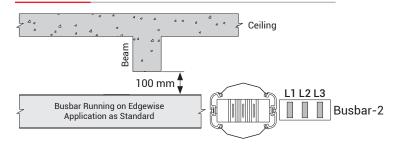
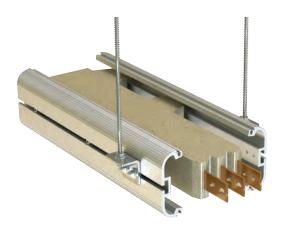
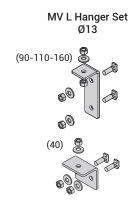



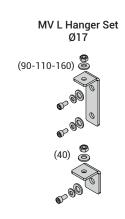
Figure 3 - Crossing Under a Beam On Edgewise Application

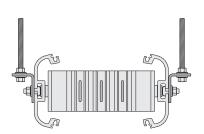
- For correct installation, the dimension from the busbar to
- the ceiling should not be less than 500mm.
- The joint should be not come across to Beams.
- The dimensions given above are minimum values.
- All dimensions are given in mm.

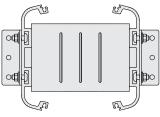
Cast Resin Installation Tools

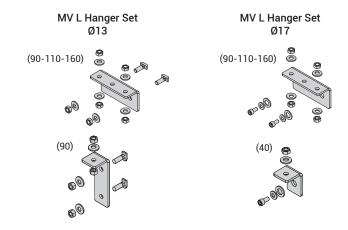

Açıklama	Sipariş Kodu
CR Joint Area Mixer	5000132
CR Plastic Hammer	5000310
CR Spoon Brush	5000311
MV Allen Torque Set	5000664
Disposable Coverall	5003622




Trunking Support

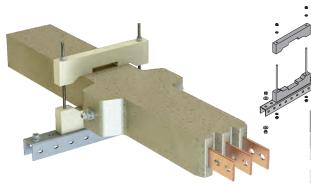

MV "L" Hanger Set Code




MVC - Cu Conductor Conductor Dimensions			MV "L" Hanger Set Code					
Rated Current	Busbar Code		Description	Order Code	Description	Order Code		
950	09	6x40						
1150	11	6x55	MV L Hanger Set Ø13-(40)	3191532	MV L Hanger Set Ø17-(40)	3191533		
1350	13	6x70						
1650	16	6x95	MV L Hanger Set Ø13-(90)	3180150	MV L Hanger Set Ø17-(90)	3180153		
2250	22	6x140	MV L Hanger Set Ø13-(110)	3180151	MV L Hanger Set Ø17-(110)	3180154		
2750	27	6x200	MV L Hanger Set Ø13-(160)	3180152	MV L Hanger Set Ø17-(160)	3180155		

Note: Ø17 Panel Connection for Special Suspension. It is not included in the rod hanger set.

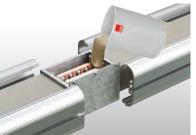
MV "L" Vertical Hanger Set Code


	- Cu uctor	Conductor Dimensions	MV "I" Hanger Set Code			
Rated Current	Busbar Code		Description	Order Code	Description	Order Code
950	09	6x40				
1150	11	6x55	MV L Hanger Set Ø13-(90)	3180150	MV L Hanger Set Ø17-(40)	3191533
1350	13	6x70				
1650	16	6x95	MV DIKEY L Hanger Set Ø13-(90)	3389123	MV Dikey L Hanger Set Ø17-(90)	3389127
2250	22	6x140	MV DIKEY L Hanger Set Ø13-(110)	3388857	MV Dikey L Hanger Set Ø17-(110)	3389124
2750	27	6x200	MV DIKEY L Hanger Set Ø13-(160)	3389121	MV Dikey L Hanger Set Ø17-(160)	3389125

Note: Ø17 Panel Connection for Special Suspension. It is not included in the rod hanger set.

Trunking Support

MV 12kV Isolated Hanger Set Code

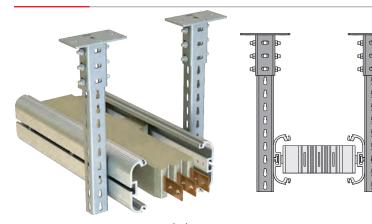

MV 12kV Isolated Hanger Set

	П
0 0 0 0 0 0 0 0	0

MVC - Cu Conductor		Conductor Dimensions	MV 12kV Isolated Hanger Set Co		
Rated Current	Busbar Code		Description	Order Code	
950	09	6x40		3195616	
1150	11	6x55	MV 12kV Isolated Hanger Set		
1350	13	6x70			
1650	16	6x95			
2250	22	6x140	MV 12kV Isolated Hanger Set	3195562	
2750	27	6x200			

12kV Additional Zone Weights

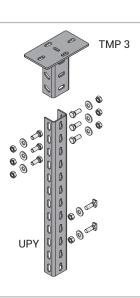
MVC - Cu Conductor		Conductor Dimensions	Weight (kg)
Rated Current	Busbar Code		
950	09	6x40	12,0
1150	11	6x55	13,5
1350	13	6x70	14,0
1650	16	6x95	15,5
2250	22	6x140	18,5
2750	27	6x200	22,5



Total mixture weight of 1 Bucket is 15 kg.

When determining the material to be consumed for joint point, the installation of joint point weighing 15 kg and its multiples should be included in the work plan for the same day. Otherwise, since the remaining material will happen a curing reaction, it cannot be used in another day's work plan and will be scrapped. Material planning should be done taking this detail into consideration.

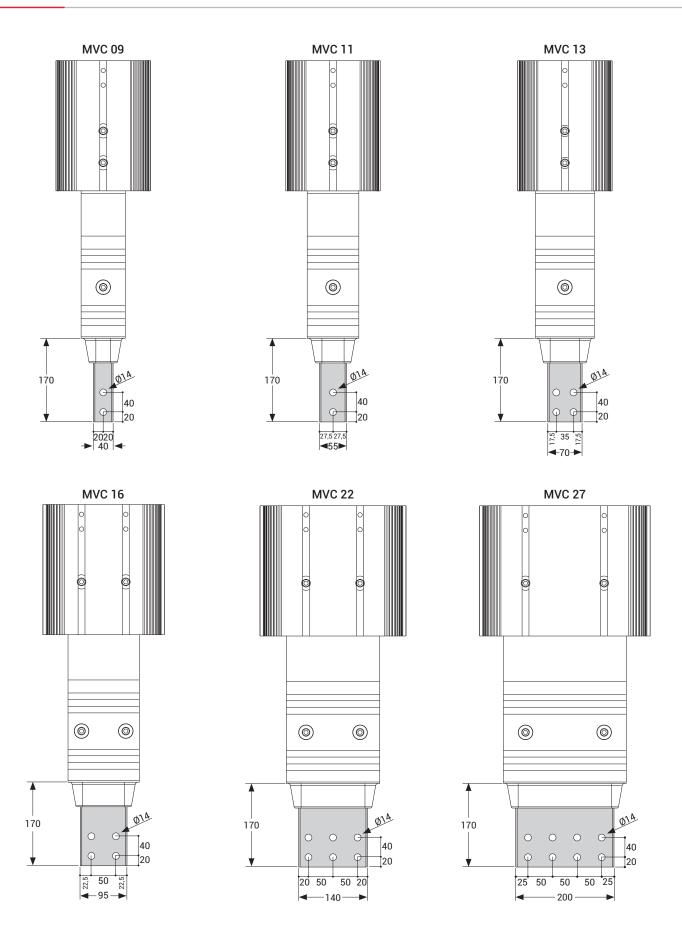
Ceiling Fexing Element


Description	T	Tensile Load	Weight	Order	Pack
	(mm)	(kg.)	(kg./pcs)	Code	(pcs)
TMP 3	4	900	1,689	3086554	10

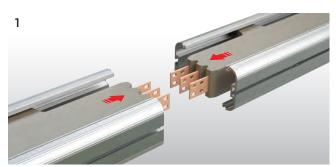
Note: The bolt set is not included in the product. Please order separately.

TMP 3 Fixing Element Mounting; 6 pcs M10x30 Bolt, 12 pcs M10 Washers, 6 pcs M10 Spring Washers, 6 pcs M10 Nuts should be used.

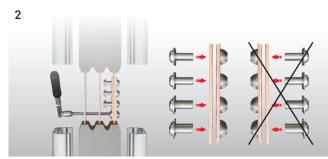
Heavy Duty Supports (U)


Description	T (mm)	L (mm)	Weight (kg./pcs)	Order Code
UPY 150	4	150	0,586	3004486
UPY 300	4	300	1,172	3004487
UPY 400	4	400	1,562	3004489
UPY 500	4	500	1,956	3004491
UPY 600	4	600	2,343	3004493
UPY 700	4	700	2,728	3004495
UPY 800	4	800	3,124	3004496
UPY 900	4	900	3,515	3004497
UPY 1000	4	1000	3,945	3004498
UPY 1100	4	1100	4,296	3004499
UPY 1200	4	1200	4,686	3004500
UPY 1300	4	1300	5,071	3004501
UPY 1400	4	1400	5,467	3004502
UPY 1500	4	1500	5,917	3004503
UPY 1600	4	1600	6,248	3004504
UPY 1700	4	1700	6,633	3004505
UPY 1800	4	1800	7,029	3004506
UPY 1900	4	1900	7,414	3004507
UPY 2000	4	2000	7,811	3004508
UPY 3000	4	3000	11,716	3001954

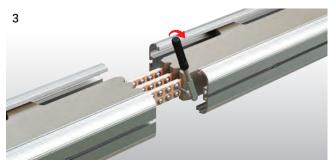
Panel Connection



Two Dimensional Drawings of Panel Modules / P10 Panel Mounted Modules

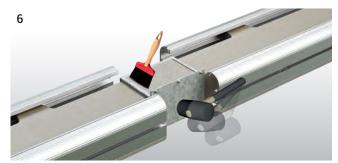


Horizontal Application



The ends of the conductors of the busbars are cleaned with a clean dry cloth. The busbars have to be fixed in the sameaxis, with a max. distance of 10 mm between the two conductors.

As shown on the figure, junction plates fixed as the bolts face the same direction at all times.

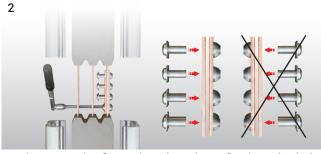

All bolts must be tightened to 72 Nm with torque wrench.

Before assembling the casting moulds, inner surfaces of casting moulds have to be wiped with clean dry cloth.

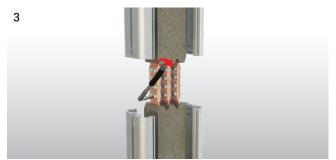
The prepared for casting should be cast from the same spot at all times.

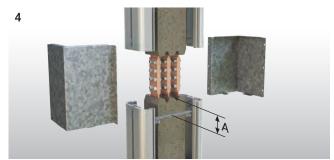
The material should be 'vibrated' with the help of a plastic hammer to remove the air in the material. Then the air bubbles on the surface have to brushed.

After the curing of the cast material is completed the sheet metal moulds can be removed. (Reaction is completed within 8 - 24 hours based on the air temperature.) The flexibles are fitted to the profiles grooves for earth continuity.


Joint protection pieces of perforated aluminium should be fitted.

Vertical Application




The ends of the conductors of the busbars are cleaned with a clean dry cloth. The busbars have to be fixed in the sameaxis, with a max. distance of 10 mm between the two conductors.

As shown on the figure, junction plates fixed as the bolts face the same direction at all times.

All bolts must be tightened to 72 Nm with torque wrench.

Support sheets are secured on the lower part of juncture area by stem bar. A min. 50-60 mm. The joint moulds are affixed on the support sheet by cleaning with a dry and clean piece of cloth.

The prepared for casting should be cast from the same spot at all times.

The material should be "vibrated" with the help of a plastic hammer to remove the air in the material. Then the air bubbles on the surface have to brushed.

After the curing of the cast material is complete the sheet metal moulds can be removed. (Reaction is completed within 8 - 24 hours based on the air temperature.) The flexibles are fitted to the profiles grooves for earth continuity.

Joint protection pieces of perforated aluminium should be fitted.

General Product Specifications

950A to 2750A Medium Voltage Busbar Systems (E-LINE MV) General Product Specifications

1- Standards & Certification:

-Busbar trunking system shall be designed in accordance with the international standards IEC 62271-200 and IEC 61439-6, type tests thereof shall be conducted and manufactured in accordance with the standard. Type tests shall be conducted by independent and accredited testing and certification bodies with international validity and certified accordingly. Short-circuit type tests and the following 3 main type tests shall be conducted for each current rating of busbar system and conformity certificate for the standards shall be obtained.

2- Overall System Structure

Busbar system should be with low impedance complying with the following specifications. This should be accomplished by placement of the tin coated conductors within the material with no entrapped air within.

2.1- Electrical Values

- Nominal insulation voltage of 12kV busbar trunking system should be 28kV.
- For the tin coated copper, the environmental temperature should be maximum 40 °C while the maximum temperature rise should be 90 K.
- Busbar trunking 3 sec. encryption must be required.
- Minimum short circuit values of busbar should be as follows

For Cu Conductors;

950-2750A: phase-phase 1 sec. value 25kA, peak value 65kA

2.2- Housing and Overall Structure

- Housing of busbar lengths is a special design and should be manufactured from a cast material.
- The structure of the busbar lengths shall have tin plated conductors along their complete length within the housing.
- In the busbar trunking system, there should be down-up and right-left turning elements, panel, transformer and cable connection elements, closure, horizontal and vertical expansion elements as a standard. Special modules and special size busbar lengths that may be required during the implementation of the project should be able to be manufactured within a short time and in accordance with the standard specification and technique.
- If busbar runs pass through the building expansion joint a horizontal expansion element shall be used in the run. Besides, horizontal dilatation element should be used at each 40 m on the horizontal lines.

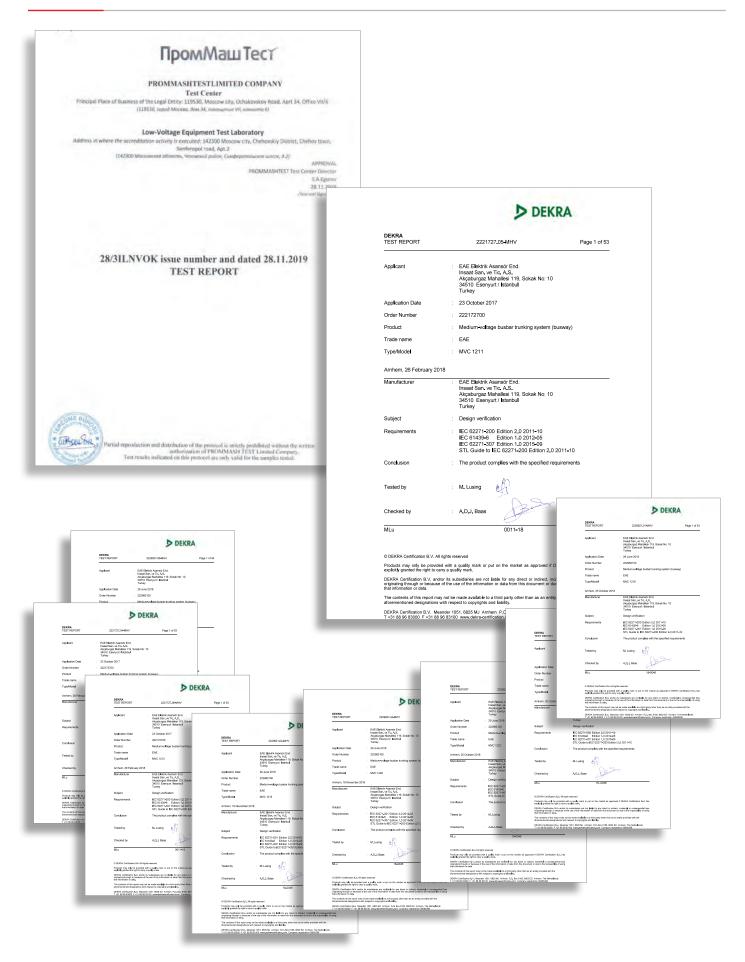
2.3- Conductors and Phase Configuration

- Busbar trunking systems conductors shall be high conductivity copper with 99.95% / 99.99% between 950-2750A.
- Busbar trunking system should be in the following conductor number and phase configuration
- a) 3 Conductors / PE housing
- Copper conductors should be 99.95% electrolytic copper. Minimum conductivity value should be 56 m/mm². Entire surfaces of the electrolytic copper conductors should be tin-coated.

2.4- Insulation Structure

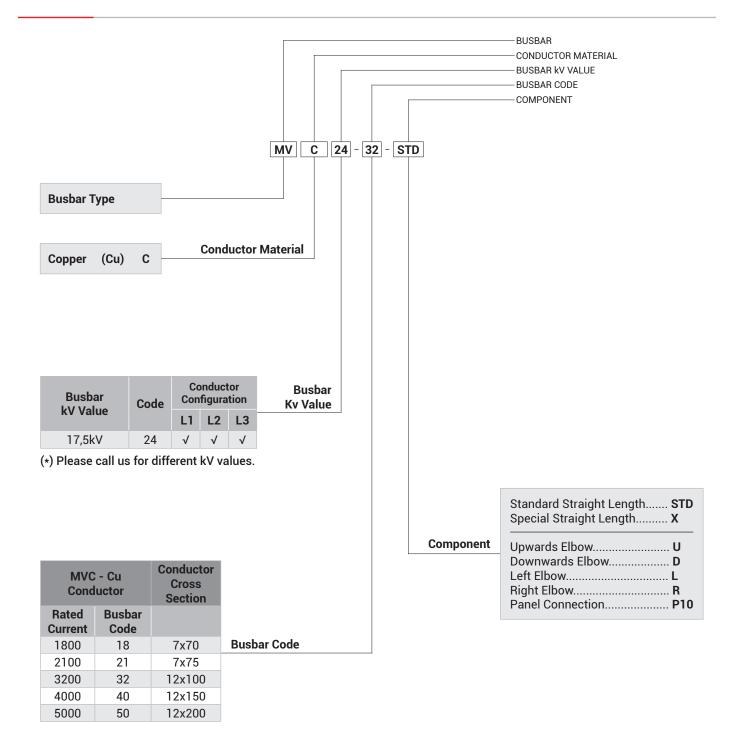
- High conductivity bars; It must be insulated with a special composite material formed by a mixture of specially selected sand, calcite and epoxy resin. This material should be suitable for temperature changes and thermal expansion. High protection should be provided against external impacts.
- Insulation structure must be such that it can operate at -70 + 150 $^{\circ}$ C.

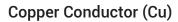
2.5- Modular Joint Structure


- The phase conductors shall be joined using two junction plates per phase of suitable cross section to maintain the rating integrity of the conductors. These plates shall be secured using bolts with non-sharp tips torqued to 72 Nm. The joint shall be completed using a mixture of epoxy and silicon to match the material of the busbar lengths. This materialshould be compliant with temperature changes and thermal expansion. It should ensure high protection against external impacts. Juncture point bolts should be tightened with torque wrench set to 72 Nm (55 lbft)

3- Assembly and Commissioning Tests

- The assembly of the busbar trunking system should be performed in accordance with the electrical project, electrical single line diagram, layout plans and detailed busbar application projects in line with the type and current values indicated on these plans, instructions provided by the manufacturer should be strictly abided with during the assembly process. Joint bolts shall definitely be tightened by the torque wrench set to correct values and insulated accordingly.
- Upon the completion of the assembly of the busbar system and controlling of the compliance to the project thereof and assembly instructions;
- a) Di-Electric test with very low frequency should be conducted.
- b) Joint resistances and Line resistances should be measured.
- c) Phase sequences should be checked.


Certificate



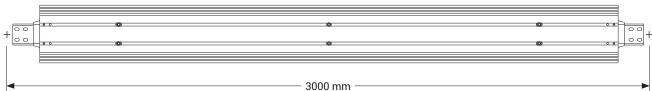
Order Code System

Technical Characteristics

Rated Current	l _r	A	1800	2100	3200	4000	5000
Busbar Kodu			18	21	32	40	50
Standards			n 2.0 2011-10; n 1.0 2015-09;		39-6 Edition 1. de to IEC 6227		2.0 2011-10
Rated Voltage	U _r	kV	17,5	17,5	17,5	17,5	17,5
Rated power frequency withstand voltage	U _d	kV	50	50	50	50	50
Rated impulse withstand withstand voltage	Up	kV	125	125	125	125	125
Rated Frequency	f _r	Hz	50	50	50	50	50
Partial Discharge		pC	< 20	< 20	< 20	< 20	< 20
External Mechanical Impacts (IK Code)*	50J, > II	K10			'	1	
Rated Short-time Withstand Current (1s)	I _k	kA _{rms}	65	65	90,7	90,7	90,7
Rated Peak Withstand Current	I _{ke}	kA	169	169	236	236	236
Rated Short-time Withstand Current for PE Conductor (1s)	I _P	kA	39	39	55,7	55,7	55,7
Rated Peak Withstand Current for PE Conductor	I _{pe}	kA	102	102	144	144	144
MEAN PHASE CONDUCTOR CHARACTERISTICS AT RATED CURRENT I	·						
Resistance at a conductor temperature of 20°C	R ₂₀	mΩ/m	0,0425	0,0401	0,0210	0,0126	0,0100
Resistance at an ambient air temperature of 35°C	R	mΩ/m	0,0568	0,0547	0,0289	0,0172	0,0138
Reactance (Independent from Temperature)	Х	mΩ/m	0,1343	0,1303	0,1084	0,0879	0,0806
Positive and negative sequence impedances at an ambient air temperature of 35°C	Z	mΩ/m	0,1458	0,1413	0,1121	0,0896	0,0818
Positive and negative sequence impedances at an ambient air temperature of 20°C	Z ₂₀	mΩ/m	0,1408	0,1363	0,1104	0,0888	0,0813
Rated Power Loss at 35°C	20	Watt	529	703,3	867,3	797,5	1010,5
DC Resistance at a conductor temperature of 20 °C for Phases	R _{phdc}	mΩ/m	0,034	0,034	0,017	0,012	0,009
DC Resistance at a conductor temperature of 20°C for PE	R _{PEdc}	mΩ/m	0,009	0,009	0,009	0,006	0,013
SECTIONS	7 240						
Phase Conductor		mm²	490	525	1200	1800	2400
PE (Housing)		mm²	8515	8515	8515	9394	10194
Conductor Cross Section		mm x mm	7x70	7x75	12x100	12x150	12x200
Busbar Weight (3 Conductors)		kg/m	104	106	122	152	187
MEAN FAULT-LOOP CHARACTERISTICS							
Zero-sequence Impedance							
Zero-sequence impedance at a conductor temperature of 20°C	Z _{(0)b20phPE}	mΩ/m	0,269	0,253	0,220	0,211	0,192
Zero-sequence impedance at an ambient temperature of 35°C	Z _{(0)bphPE}	mΩ/m	0,284	0,253	0,230	0,220	0,199
Mean Resistances and Reactances	(o)opiii L						
Resistance at a conductor temperature of 20°C	R _{b20phph}	mΩ/m	0,089	0,055	0,047	0,032	0,025
Resistance at a conductor temperature of 20°C	R _{b20phPE}	mΩ/m	0,062	0,056	0,041	0,033	0,026
Resistance at an ambient air temperature of 35°C	R _{bphph}	mΩ/m	0,119	0,075	0,046	0,044	0,035
Resistance at an ambient air temperature of 35°C	R _{bphPE}	mΩ/m	0,083	0,076	0,041	0,045	0,036
Reactance (Independent from temperature)	X _{bphph}	mΩ/m	0,264	0,246	0,209	0,170	0,143
Reactance (Independent from temperature)	X _{bphPE}	mΩ/m	0,169	0,156	0,142	0,122	0,108

 $^{^{(1)}}$ Standards The weight per metre provided in table includes 1/3 of the weight of one block joint.

Standard Straight Length

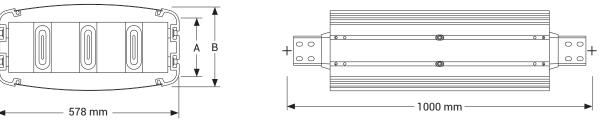

Standard Feeder Straight Length

Sample Order.

MVC 2418 - STD 17,5kV 1800 A, Copper, Feeder, 3 Conductors

Table For Outer Dimension of Busbars

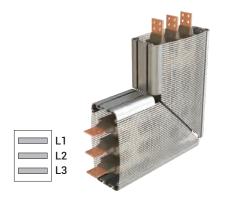
MVC - Cu Conductor	Conductor Cross Section	7x70	7x75	12x100	12x150	12x200
	Rated Current (A)	1800	2100	3200	4000	5000
	Busbar Code	18	21	32	40	50
Α	mm	160	160	160	210	260
В	mm	247	247	247	297	347


Special Feeder Straight Length

Sample Order:

MVC 2432 - X - 150 17,5kV 3200 A, Copper, Feeder, 3 Conductors, 1500 mm Special Length

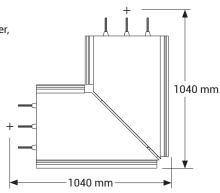
Information: Feeder Minimum Special length size = 1000 mm



Attention! The standard mounting of the MV busbar is with the conductors on edge. This allows for the easy application of the resin at the joint.

Elbows

Upwards Downwards Elbow

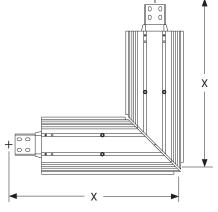


U Sample Order.

D

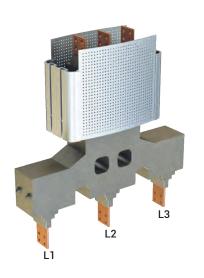
L

MVC 2421 - U 17,5kV 2100 A, Copper, Feeder, 3 Conductors



Left Right Elbow

Sample Order.


MVC 2432 - R 17,5kV 3200 A, Copper, Feeder, 3 Conductors

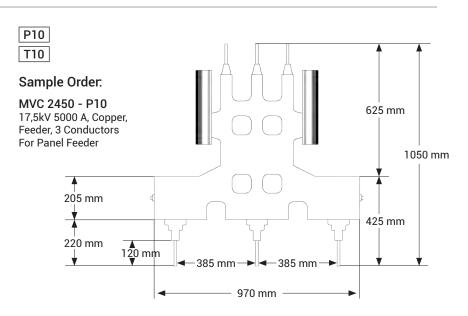


Table of Busbar Cross Section Sizes

MVC - Cu	Conductor Cross Section	7x70	7x75	12x100	12x150	12x200
Conductor	Rated Current (A)	1800	2100	3200	4000	5000
	Busbar Code	18	21	32	40	50
Х	mm	690	690	690	740	790

Panel Connection

Horizontal & Vertical Cast Resin Busbar Applications

Figure 1 - Edgewise Application

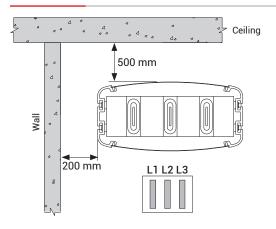
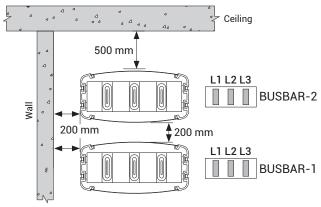



Figure 2 - Edgewise Application

Primarily on the installation phase; BUSBAR-1 line should be installed before BUSBAR-2 line.

Figure 4 - Sample Wall Crossing with Fire Barrier

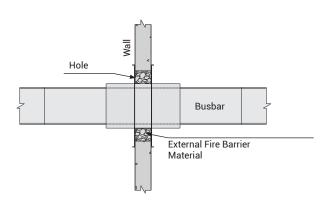


Figure 5 - Standard Wall Crossing

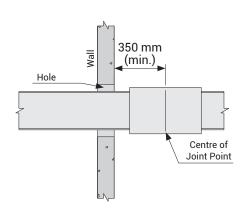
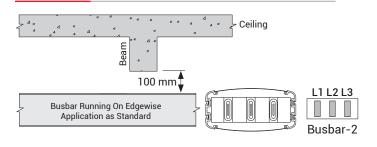
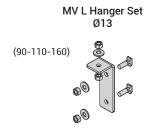



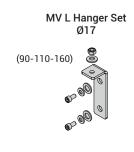
Figure 3 - Crossing Under a Beam On Edgewise Application

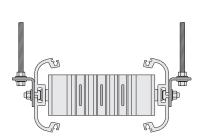
- For correct installation, the dimension from the busbar to
- the ceiling should not be less than 500mm.
- The joint should be not come across to Beams.
- The dimensions given above are minimum values.
- All dimensions are given in mm.

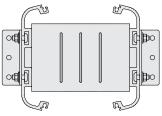
Cast Resin Installation Tools

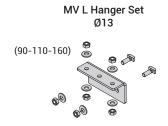

Description	Order Code
CR Joint Area Mixer	5000132
CR Plastic Hammer	5000310
CR Spoon Brush	5000311
MV Allen Torque Set	5000664
Disposable Coverall	5003622

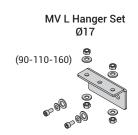



Trunking Support


MV "L" Hanger Set Code




	- Cu uctor	Conductor Dimensions	MV "I" Hanger Set Code					
Rated Current	Busbar Code		Description	Order Code	Description	Order Code		
1800	18	7x70						
2100	21	7x75	MV L Hanger Set Ø13-(90)	3180150	MV L Hanger Set Ø17-(90)	3180153		
3200	32	12x100						
4000	40	12x150	MV L Hanger Set Ø13-(110)	3180151	MV L Hanger Set Ø17-(110)	3180154		
5000	50	12x200	MV L Hanger Set Ø13-(160)	3180152	MV L Hanger Set Ø17-(160)	3180155		


Note: Ø17 Panel Connection for Special Suspension. It is not included in the rod hanger set.

MV "L" Vertical Hanger Set Code

	- Cu uctor	Conductor Dimensions	MV "I" Hanger Set Code					
Rated Current	Busbar Code		Description	Order Code	Description	Order Code		
1800	18	7x70						
2100	21	7x75	MV L Hanger Set Ø13-(90)	3389123	MV L Hanger Set Ø17-(90)	3389127		
3200	32	12x100						
4000	40	12x150	MV L Hanger Set Ø13-(110)	3388857	MV L Hanger Set Ø17-(110)	3389124		
5000	50	12x200	MV L Hanger Set Ø13-(160)	3389121	MV L Hanger Set Ø17-(160)	3389125		

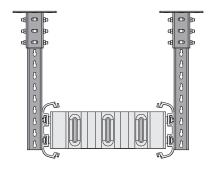
Note: Ø17 Panel Connection for Special Suspension. It is not included in the rod hanger set.

Trunking Support

17,5kV Additional Zone Weights

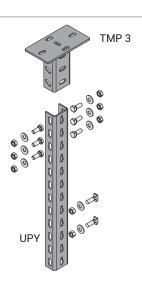
MVC Cond		Conductor Dimensions	Weight (kg)	
Rated Current	Busbar Code			
1800	18	7x70	36,0	
2100	21	7x75	36,0	
3200	32	12x100	34,0	
4000	40	12x150	41,5	
5000	50	12x200	48,0	
5700	57	15x200	48,0	

Total mixture weight of 1 Bucket is 15 kg.


When determining the material to be consumed for joint point, the installation of joint point weighing 15 kg and its multiples should be included in the work plan for the same day. Otherwise, since the remaining material will happen a curing reaction, it cannot be used in another day's work plan and will be scrapped. Material planning should be done taking this detail into consideration.

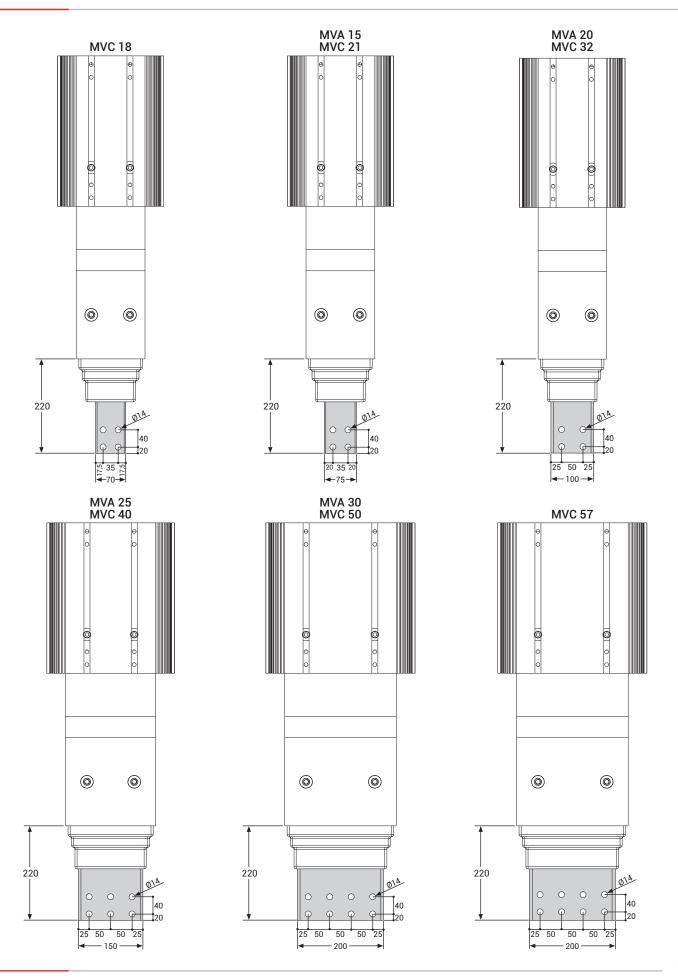
Ceiling Fexing Element

Description	T (mm)	Tensile Load (kg.)	Weight (kg./pcs)		Pack (pcs)
TMP 3	4	900	1,689	3086554	10

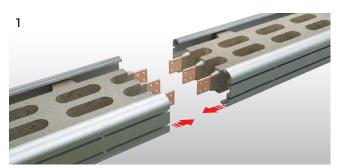

Note: The bolt set is not included in the product. Please order separately.

TMP 3 Fixing Element Mounting; 6 pcs M10x30 Bolt, 12 pcs M10 Washers, 6 pcs M10 Spring Washers, 6 pcs M10 Nuts should be used.

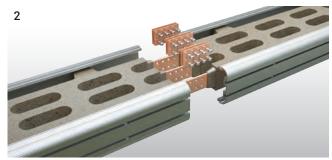
Heavy Duty Supports (U)


Description	T (mm)	L (mm)	Weight (kg./pcs)	Order Code
UPY 150	4	150	0,586	3004486
UPY 300	4	300	1,172	3004487
UPY 400	4	400	1,562	3004489
UPY 500	4	500	1,956	3004491
UPY 600	4	600	2,343	3004493
UPY 700	4	700	2,728	3004495
UPY 800	4	800	3,124	3004496
UPY 900	4	900	3,515	3004497
UPY 1000	4	1000	3,945	3004498
UPY 1100	4	1100	4,296	3004499
UPY 1200	4	1200	4,686	3004500
UPY 1300	4	1300	5,071	3004501
UPY 1400	4	1400	5,467	3004502
UPY 1500	4	1500	5,917	3004503
UPY 1600	4	1600	6,248	3004504
UPY 1700	4	1700	6,633	3004505
UPY 1800	4	1800	7,029	3004506
UPY 1900	4	1900	7,414	3004507
UPY 2000	4	2000	7,811	3004508
UPY 3000	4	3000	11,716	3001954

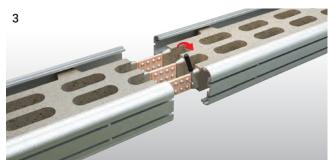
Panel Connection

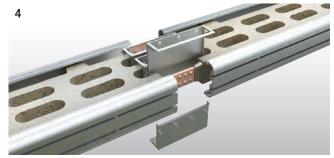


Two Dimensional Drawings of Panel Modules / P10 Panel Mounted Modules



Horizontal Application




The ends of the conductors of the busbars are cleaned with a clean dry cloth. The busbars have to be fixed in the same axis, with a max. distance of 10 mm between the two conductors.

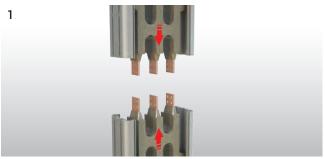
As shown on the figure, junction plates fixed as the bolts face the same direction at all times.

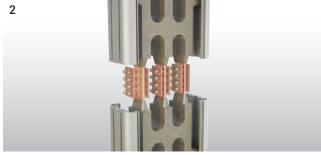
All bolts must be tightened to 72 Nm with torque wrench.

Before assembling the casting moulds, inner surfaces of casting moulds have to be wiped with clean dry cloth.

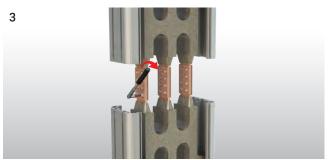
The prepared for casting should be cast from the same spot at all times.

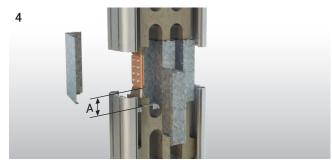
The material should be 'vibrated' with the help of a plastic hammer to remove the air in the material. Then the air bubbles on the surface have to brushed.


After the curing of the cast material is completed the sheet metal moulds can be removed. (Reaction is completed within 8 - 24 hours based on the air temperature.) The flexibles are fitted to the profiles grooves for earth continuity.


Joint protection pieces of perforated aluminium should be fitted.

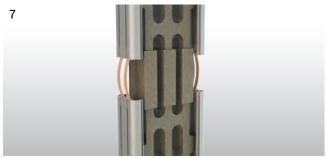
Vertical Application




The ends of the conductors of the busbars are cleaned with a clean dry cloth. The busbars have to be fixed in the sameaxis, with a max. distance of 10 mm between the two conductors.

As shown on the figure, junction plates fixed as the bolts face the same direction at all times.

All bolts must be tightened to 72 Nm with torque wrench.


Support sheets are secured on the lower part of juncture area by stem bar. A min. 50-60 mm. The joint moulds are affixed on the support sheet by cleaning with a dry and clean piece of cloth.

The prepared for casting should be cast from the same spot at all times.

The material should be "vibrated" with the help of a plastic hammer to remove the air in the material. Then the air bubbles on the surface have to brushed.

After the curing of the cast material is complete the sheet metal moulds can be removed. (Reaction is completed within 8 - 24 hours based on the air temperature.) The flexibles are fitted to the profiles grooves for earth continuity.

Joint protection pieces of perforated aluminium should be fitted.

General Product Specifications

1800A to 5000A Medium Voltage Busbar Systems (E-LINE MV) General Product Specifications

1-Standards & Certification:

- Busbar trunking system shall be designed in accordance with international standards IEC 62271-200 and IEC 61439-6, type tests thereof shall be conducted and manufactured in accordance with the standard. Type tests shall be conducted by independent and accredited testing and certification bodies with international validity and certified accordingly. Short-circuit type tests and the following 3 main type tests shall be conducted for each current rating of busbar system and conformity certificate for the standards shall be obtained.

2-Overall System Structure

Busbar system should be with low impedance complying with the following specifications. This should be accomplished by placement of the tin coated conductors within the material with no entrapped air within.

2.1-Electrical Values

- Nominal insulation voltage of 17,5kV busbar trunking system should be 50kV.
- For the tin coated copper, the environmental temperature should be maximum 40 °C while the maximum temperature rise should be 90 K.
- Busbar channels 3 sec. encryption must be required.
- Minimum short circuit busbar lengths should be as follows.

For Cu Conductors

800-2100 A: phase-phase 1 sec. value 65 kA, peak value 169 kA 3200-5000 A: phase-phase 1 sec. value 72 kA, peak value 187 kA

2.2-Housing and Overall Structure

- Housing of busbar lengths is a special design and should be manufactured from a cast material.
- The structure of the busbar lengths shall have tin plated conductors along their complete length within the housing.
- In the busbar trunking system, there should be down-up and right-left turning elements, panel, transformer and cable connection elements, closure, horizontal and vertical expansion elements as a standard. Special modules and special size busbar lengths that may be required during the implementation of the project should be able to be manufactured within a short time and in accordance with the standard specification and technique.
- If busbar runs pass through the building expansion joint a horizontal expansion element shall be used in the run. In addition horizontal expansion elements should be used at each 40 m on the horizontal lines.

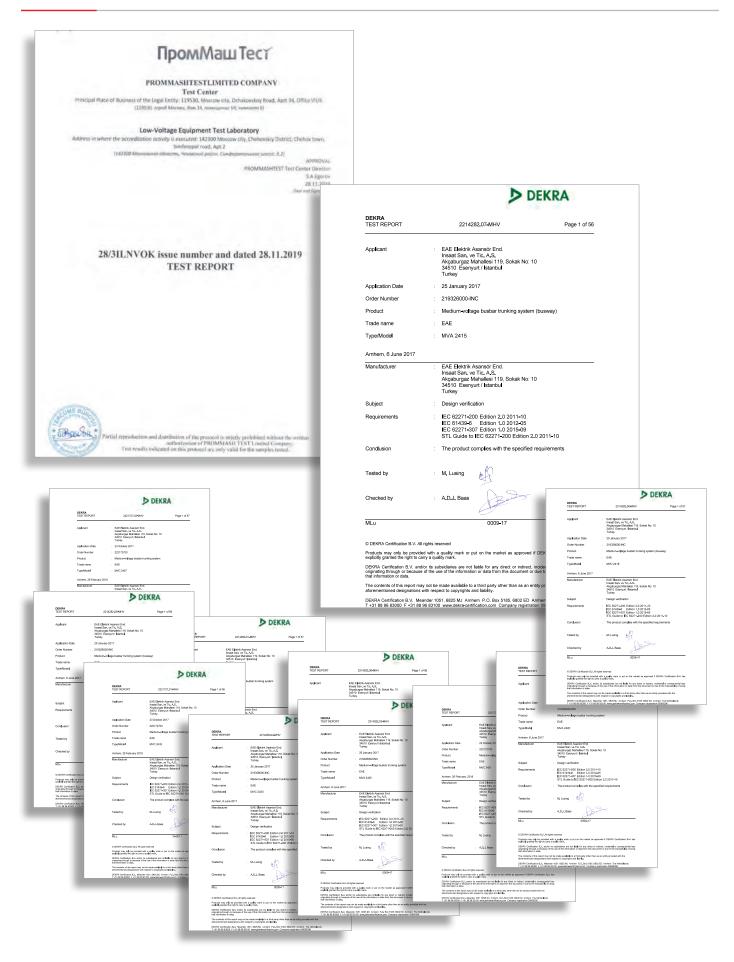
2.3-Conductors and Phase Configuration

- Busbar trunking system should be copper conductive between 1800-5700A.
- Busbar trunking systems conductors shall be high conductivity copper.
 - a) 3 Conductors / PE housing
- Copper conductors should be 99.99% electrolytic copper. Minimum conductivity value should be 56 m/mm². Entire surfaces of the electrolytic copper conductors should be tin-coated.

2.4- Insulation Structure

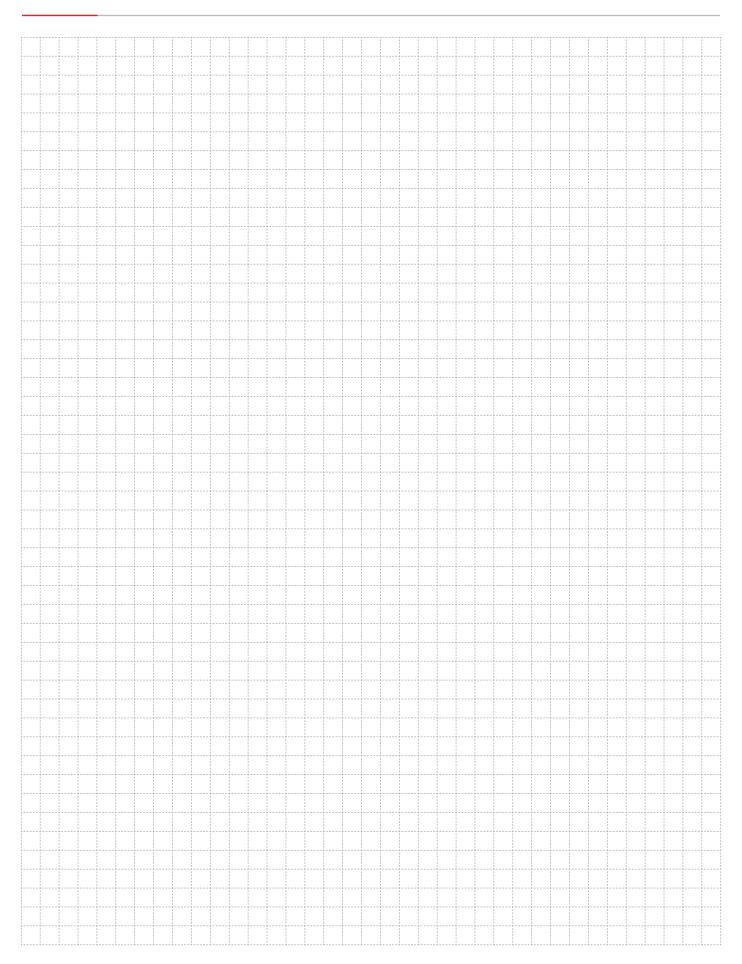
- High conductivity bars; It must be insulated with a special composite material formed by a mixture of specially selected sand, calcite and epoxy resin. This material should be suitable for temperature changes and thermal expansion. High protection should be provided against external impacts.
- Insulation structure must be such that it can operate at -70 + 150 ° C.

2.5-Modular Joint Structure


The phase conductors shall be joined using two junction plates per phase of suitable cross section to maintain the rating integrity of the conductors. These plates shall be secured using bolts with non-sharp tips torqued to 72 Nm. The joint shall be completed using a mixture of epoxy and silicon to match the material of the busbar lengths. This material should be compliant with temperature changes and thermal expansion. It should ensure high protection against external impacts. Juncture point bolts should be tightened with torque wrench set to 72 Nm (55 lbft)

3-Assembly and Commissioning Tests

- The assembly of the busbar trunking system should be performed in accordance with the electrical project, electrical single line diagram, layout plans and detailed busbar application projects in line with the type and current values indicated on these plans, instructions provided by the manufacturer should be strictly abided with during the assembly process. Joint bolts shall definitely be tightened by the torque wrench set to correct values and insulated accordingly.
- Upon the completion of the assembly of the busbar system and controlling of the compliance to the project thereof and assembly instructions;
 - a) Di-Electric test with very low frequency should be conducted.
 - b) Joint resistances and Line resistances should be measured.
 - c) Phase sequences should be checked.


Certificate

Notes

SUSTAINABLE FUTURE

Sustainability Management at EAE Elektrik

As part of our goal to support sustainable development and green transformation, measuring, evaluating, and managing all economic, environmental, and social impacts resulting from our sustainability practices is a key governance priority for EAE Elektrik. We act with great care in analyzing, monitoring, and managing the economic, environmental, and social impacts and risks that arise throughout our value chain in both our national and global operations.

EAE Elektrik

Head Office

Akcaburgaz Mahallesi, 3114. Sokak, No: 10 34522 Esenyurt - Istanbul - Turkiye Tel: +90 (212) 866 20 00 Fax: +90 (212) 886 24 20

EAE DL 3 Factory

Gebze IV Istanbul Makine ve Sanayicileri Organize Bolgesi, 6.Cadde, No:6 41455 Demirciler Koyu, Dilovasi - Kocaeli - Turkiye Tel: +90 (262) 999 05 55 Fax: +90 (262) 502 05 69

